Weak convergence of random processes with immigration at random times
نویسندگان
چکیده
منابع مشابه
Pólya Urns with Immigration at Random Times
We study the number of white balls in a classical Pólya urn model with the additional feature that, at random times, a black ball is added to the urn. The number of draws between these random times are i.i.d. and, under certain moment conditions on the inter-arrival distribution, we characterize the limiting distribution of the (properly scaled) number of white balls as the number of draws goes...
متن کاملWeak Convergence of Random Functions
Let {vij}, i, j = 1, 2, . . . , be i.i.d. symmetric random variables with E(v 11) < ∞, and for each n let Mn = 1 sVnV T n , where Vn = (vij), i = 1, 2, . . . , n, j = 1, 2, . . . , s = s(n), and n/s → y > 0 as n → ∞. Denote by OnΛnO n the spectral decomposition of Mn. Define X ∈ D[0, 1] by Xn(t) = √ n 2 ∑[nt] i=1(y 2 i − 1 n), where (y1, y2, . . . , yn) = O (± 1 √ n ,± 1 √ n , . . . ,± 1 √ n ) ...
متن کاملWeak Convergence of Random Sets
In this paper the classical Portmanteau theorem which provides equivalent conditions of weak convergence of sequence of probability measures is extended on the space of the sequence of probability measures induced by random sets.
متن کاملA Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملAnalysis of Random Processes with Fuzzy Observations Using Discretization Method
This article has no abstract.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Probability
سال: 2020
ISSN: 0021-9002,1475-6072
DOI: 10.1017/jpr.2019.88